Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Xia Sun, ${ }^{*}$ Yi-Feng Yu, Shuai Wang and Cui-Juan Xing

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: fxsun001@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.048$
$w R$ factor $=0.138$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Methyl 5-[N-(2-methoxycarbonyl-1-methylvinyl)-carbamoyl]-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylate monohydrate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$, is a nefidipine analog. The crystal packing is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the molecules into chains running parallel to the c axis.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable for the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu \& Knaus, 1999; Goldmann \& Stoltefuss, 1991). The title compound, (I), is a nefidipine analog.

(I)

Fig. 1 shows the structure of (I). Bond lengths and angles are unexceptional. The dihydropyridine ring has a boat conformation. This compares well with the structures of 3-(benzotriazol-1-yl) 5-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate ethyl acetate hemisolvate (Sun et al., 2006) and nefidipine (Hofmann \& Cimiraglia, 1990). Atoms C3 and N1 are displaced from the mean plane through $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ by 0.413 (1) and 0.180 (1) \AA, respectively. The dihedral angle between the benzene ring and the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane is 88.71 (1) ${ }^{\circ}$.

The crystal packing is stabilized by intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which link the molecules into chains running parallel to the c axis.

Experimental

The title compound was prepared by dissolving 2,6-dimethyl-4-(p-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl
ester ($332 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and triethylamine (1 ml). $\mathrm{SOCl}_{2}(119 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added dropwise to this solution at $275-277 \mathrm{~K}$. The reaction mixture was stirred at $275-277 \mathrm{~K}$ for a further 1 h . Methyl 3-aminobut-2-enoate ($330 \mathrm{mg}, 2 \mathrm{mmol}$) was added to this solution. The reaction mixture was stirred at $275-277 \mathrm{~K}$ for a further 8 h . Water (20 ml) was added and two layers formed. The organic layer was collected and the solvent was removed by vacuum evaporation at 293 K . The target compound was purified by chromatography on a silica-gel column (eluting with ethyl acetate and petroleum, 1:6) at room temperature. The product was obtained in 20% yield. Suitable crystals were obtained by slow evaporation of an ethyl acetate solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}$	$V=1081.5(10) \AA^{3}$
$M_{r}=474.44$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.872(5) \AA$	Mo $K \alpha$ radiation
$b=11.800(7) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$c=12.277(7) \AA$	$T=294(2) \mathrm{K}$
$\alpha=9.238(10)^{\circ}$	Block, yellow
$\beta=91.757(10)^{\circ}$	$0.26 \times 0.24 \times 0.14 \mathrm{~mm}$
$\gamma=108.391(9)^{\circ}$	

$\gamma=108.391(9)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.973, T_{\max }=0.985
$$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.138$
$S=1.04$
3802 reflections
304 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\prime \mathrm{i}}$	0.85	2.09	$2.916(10)$	162
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{i}}$	0.85	2.11	$2.967(12)$	178

Symmetry code: (i) $-x,-y+1,-z+1$.
All methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ $=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$; the torsion angles were refined to fit the electron density. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$. One O atom of the nitro group was

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Both disorder components are shown.
disordered over two sites, O 3 and $\mathrm{O3}^{\prime}$, with refined occupancy factors of 0.54 (4) and 0.46 (4), respectively.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge support from Hebei University of Science and Technology.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 15591578.

Hofmann, H. J. \& Cimiraglia, R. (1990). J. Mol. Struct. (Theochem), 205, 1-11. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, F.-X., Fu, D.-C. \& Yu, Y.-F. (2006). Acta Cryst. E62, o4207-o4208.
Yiu, S. H. \& Knaus, E. E. (1999). Drug Dev. Res. 48, 26-37.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

